skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Ujjwal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flexible systems that can conform to any shape are desirable for wearable applications. Over the past decade, there have been tremendous advances in the domain of flexible electronics which enabled printing of devices, such as sensors on a flexible substrate. Despite these advances, pure flexible electronics systems are limited by poor performance and large feature sizes. Flexible hybrid electronics (FHE) is an emerging technology which addresses these issues by integrating high performance rigid integrated circuits and flexible devices. Yet, there are no system-level design flows and algorithms for the design of FHE systems. To this end, this paper presents a multi-objective design algorithm to implement a target application optimally using a library of rigid and flexible components. Our algorithm produces a set of Pareto frontiers that optimize the physical flexibility, energy per operation and area metrics. Simulation studies show a 32× range in area and 4× range in flexibility across the set of Pareto-optimal design points. 
    more » « less